Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 38(34): 10538-10547, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35974697

RESUMO

If life developed in hydrothermal vents, it would have been within mineral membranes. The first proto-cells must have evolved to manipulate the mineral membranes that formed their compartments in order to control their metabolism. There must have occurred a biological takeover of the self-assembled mineral structures of the vents, with the incorporation of proto-biological molecules within the mineral membranes to alter their properties for life's purposes. Here, we study a laboratory analogue of this process: chemical-garden precipitation of the amino acids arginine and tryptophan with the metal salt iron chloride and sodium silicate. We produced these chemical gardens using different methodologies in order to determine the dependence of the morphology and chemistry on the growth conditions, as well as the effect of the amino acids on the formation of the iron-silicate chemical garden. We compared the effects of having amino acids initially within the forming chemical garden, corresponding to the internal zones of hydrothermal vents, or else outside, corresponding to the surrounding ocean. The characterization of the formed chemical gardens using X-ray diffraction, Fourier transform infrared spectroscopy, elemental analysis, and scanning electron microscopy demonstrates the presence of amino acids in these structures. The growth method in which the amino acid is initially in the tablet with the iron salt is that which generated chemical gardens with more amino acids in their structures.


Assuntos
Fontes Hidrotermais , Compostos Inorgânicos , Aminoácidos , Biomineralização , Fontes Hidrotermais/química , Ferro/química
2.
Philos Trans A Math Phys Eng Sci ; 380(2227): 20200423, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35599565

RESUMO

It is common to compare life with machines. Both consume fuel and release waste to run. In biology, the engine that drives the living system is referred to as metabolism. However, attempts at deciphering the origins of metabolism do not focus on this energetic relationship that sustains life but rather concentrate on nonenzymatic reactions that produce all the intermediates of an extant metabolic pathway. Such an approach is akin to studying the molecules produced from the burning of coal instead of deciphering how the released energy drives the movement of pistons and ultimately the train when investigating the mechanisms behind locomotion. Theories that do explicitly invoke geological chemical gradients to drive metabolism most frequently feature hydrothermal vent conditions, but hydrothermal vents are not the only regions of the early Earth that could have provided the fuel necessary to sustain the Earth's first (proto)cells. Here, we give examples of prior reports on protometabolism and highlight how more recent investigations of out-of-equilibrium systems may point to alternative scenarios more consistent with the majority of prebiotic chemistry data accumulated thus far. This article is part of the theme issue 'Emergent phenomena in complex physical and socio-technical systems: from cells to societies'.


Assuntos
Fontes Hidrotermais , Planeta Terra , Fontes Hidrotermais/química
3.
Nat Commun ; 12(1): 6861, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824206

RESUMO

Carbon budgets of hydrothermal plumes result from the balance between carbon sinks through plume chemoautotrophic processes and carbon release via microbial respiration. However, the lack of comprehensive analysis of the metabolic processes and biomass production rates hinders an accurate estimate of their contribution to the deep ocean carbon cycle. Here, we use a biogeochemical model to estimate the autotrophic and heterotrophic production rates of microbial communities in hydrothermal plumes and validate it with in situ data. We show how substrate limitation might prevent net chemolithoautotrophic production in hydrothermal plumes. Elevated prokaryotic heterotrophic production rates (up to 0.9 gCm-2y-1) compared to the surrounding seawater could lead to 0.05 GtCy-1 of C-biomass produced through chemoorganotrophy within hydrothermal plumes, similar to the Particulate Organic Carbon (POC) export fluxes reported in the deep ocean. We conclude that hydrothermal plumes must be accounted for as significant deep sources of POC in ocean carbon budgets.


Assuntos
Biomassa , Processos Heterotróficos/fisiologia , Fontes Hidrotermais/microbiologia , Oceanos e Mares , Ciclo do Carbono , Crescimento Quimioautotrófico/fisiologia , Fontes Hidrotermais/química , Microbiota , Modelos Teóricos , Células Procarióticas/metabolismo , Água do Mar/química , Água do Mar/microbiologia
4.
PLoS One ; 16(9): e0256321, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34495995

RESUMO

The flanking regions of Guaymas Basin, a young marginal rift basin located in the Gulf of California, are covered with thick sediment layers that are hydrothermally altered due to magmatic intrusions. To explore environmental controls on microbial community structure in this complex environment, we analyzed site- and depth-related patterns of microbial community composition (bacteria, archaea, and fungi) in hydrothermally influenced sediments with different thermal conditions, geochemical regimes, and extent of microbial mats. We compared communities in hot hydrothermal sediments (75-100°C at ~40 cm depth) covered by orange-pigmented Beggiatoaceae mats in the Cathedral Hill area, temperate sediments (25-30°C at ~40 cm depth) covered by yellow sulfur precipitates and filamentous sulfur oxidizers at the Aceto Balsamico location, hot sediments (>115°C at ~40 cm depth) with orange-pigmented mats surrounded by yellow and white mats at the Marker 14 location, and background, non-hydrothermal sediments (3.8°C at ~45 cm depth) overlain with ambient seawater. Whereas bacterial and archaeal communities are clearly structured by site-specific in-situ thermal gradients and geochemical conditions, fungal communities are generally structured by sediment depth. Unexpectedly, chytrid sequence biosignatures are ubiquitous in surficial sediments whereas deeper sediments contain diverse yeasts and filamentous fungi. In correlation analyses across different sites and sediment depths, fungal phylotypes correlate to each other to a much greater degree than Bacteria and Archaea do to each other or to fungi, further substantiating that site-specific in-situ thermal gradients and geochemical conditions that control bacteria and archaea do not extend to fungi.


Assuntos
Archaea/genética , Bactérias/genética , Fungos/genética , Sedimentos Geológicos/microbiologia , Fontes Hidrotermais/microbiologia , Biodiversidade , California , Meio Ambiente , Sedimentos Geológicos/química , Fontes Hidrotermais/química , Filogenia , Análise de Sequência de DNA/métodos
5.
Nat Commun ; 12(1): 1211, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33619262

RESUMO

Primary production in the Southern Ocean (SO) is limited by iron availability. Hydrothermal vents have been identified as a potentially important source of iron to SO surface waters. Here we identify a recurring phytoplankton bloom in the high-nutrient, low-chlorophyll waters of the Antarctic Circumpolar Current in the Pacific sector of the SO, that we argue is fed by iron of hydrothermal origin. In January 2014 the bloom covered an area of ~266,000 km2 with depth-integrated chlorophyll a > 300 mg m-2, primary production rates >1 g C m-2 d-1, and a mean CO2 flux of -0.38 g C m-2 d-1. The elevated iron supporting this bloom is likely of hydrothermal origin based on the recurrent position of the bloom relative to two active hydrothermal vent fields along the Australian Antarctic Ridge and the association of the elevated iron with a distinct water mass characteristic of a nonbuoyant hydrothermal vent plume.


Assuntos
Eutrofização/fisiologia , Fontes Hidrotermais/química , Ferro/farmacologia , Oceanos e Mares , Fitoplâncton/crescimento & desenvolvimento , Regiões Antárticas , Biomassa , Carbono/análise , Clorofila/análise , Eutrofização/efeitos dos fármacos , Cinética , Nitrogênio/análise , Fósforo/análise , Fitoplâncton/efeitos dos fármacos , Água/química
6.
Sci Rep ; 10(1): 22332, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33339849

RESUMO

Seagrass Cymodocea nodosa was sampled off the Vulcano island, in the vicinity of a submarine volcanic vent. Leaf samples were collected from plants growing in a naturally acidified site, influenced by the long-term exposure to high CO2 emissions, and compared with others collected in a nearby meadow living at normal pCO2 conditions. The differential accumulated proteins in leaves growing in the two contrasting pCO2 environments was investigated. Acidified leaf tissues had less total protein content and the semi-quantitative proteomic comparison revealed a strong general depletion of proteins belonging to the carbon metabolism and protein metabolism. A very large accumulation of proteins related to the cell respiration and to light harvesting process was found in acidified leaves in comparison with those growing in the normal pCO2 site. The metabolic pathways linked to cytoskeleton turnover also seemed affected by the acidified condition, since a strong reduction in the concentration of cytoskeleton structural proteins was found in comparison with the normal pCO2 leaves. Results coming from the comparative proteomics were validated by the histological and cytological measurements, suggesting that the long lasting exposure and acclimation of C. nodosa to the vents involved phenotypic adjustments that can offer physiological and structural tools to survive the suboptimal conditions at the vents vicinity.


Assuntos
Alismatales/genética , Dióxido de Carbono/metabolismo , Folhas de Planta/genética , Proteoma/genética , Alismatales/crescimento & desenvolvimento , Dióxido de Carbono/farmacologia , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Concentração de Íons de Hidrogênio , Fontes Hidrotermais/química , Folhas de Planta/citologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteoma/efeitos dos fármacos , Proteômica/métodos , Água do Mar/química
7.
Int J Biol Macromol ; 163: 2346-2356, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32971167

RESUMO

Superoxide dismutase (SOD, EC 1.15.1.1) is a member of metalloenzyme that plays a key role in protecting organisms from oxidative damage. A novel extracellular CuZn superoxide dismutase RESOD was identified from Rimicaris exoculata, a dominant species that lives in close proximity to the deep-sea hydrothermal vents. It encoded a protein consisting of 227 amino acids with a signal peptide of 22 amino acids. Sequence analysis revealed that it had the characteristics of CuZn superoxide dismutase, and had low homology with the known SODs. Then the recombinant RESOD was expressed successfully, and high-purity RESOD was obtained. The recombinant RESOD exhibited maximal activity and stability with a temperature range of 0 °C to 10 °C. And the optimal pH for the activity and stability was about 10. However, RESOD was sensitive to some metal ions, particularly calcium. Furthermore, the biological function of RESOD was investigated in HeLa cells. It was found that RESOD could reduce the level of oxidation, and decrease the apoptosis resulted from excessive oxidant challenge. In conclusion, a novel alkali-tolerant cold-active extracellular CuZn SOD was characterized. The characteristics make RESOD a good candidate in a wide range of applications.


Assuntos
Decápodes/enzimologia , Fontes Hidrotermais/microbiologia , Superóxido Dismutase-1/química , Animais , Decápodes/genética , Células HeLa , Humanos , Fontes Hidrotermais/química , Oceanos e Mares , Superóxido Dismutase-1/isolamento & purificação
8.
Proc Natl Acad Sci U S A ; 117(37): 22873-22879, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32900930

RESUMO

All life on Earth is built of organic molecules, so the primordial sources of reduced carbon remain a major open question in studies of the origin of life. A variant of the alkaline-hydrothermal-vent theory for life's emergence suggests that organics could have been produced by the reduction of CO2 via H2 oxidation, facilitated by geologically sustained pH gradients. The process would be an abiotic analog-and proposed evolutionary predecessor-of the Wood-Ljungdahl acetyl-CoA pathway of modern archaea and bacteria. The first energetic bottleneck of the pathway involves the endergonic reduction of CO2 with H2 to formate (HCOO-), which has proven elusive in mild abiotic settings. Here we show the reduction of CO2 with H2 at room temperature under moderate pressures (1.5 bar), driven by microfluidic pH gradients across inorganic Fe(Ni)S precipitates. Isotopic labeling with 13C confirmed formate production. Separately, deuterium (2H) labeling indicated that electron transfer to CO2 does not occur via direct hydrogenation with H2 but instead, freshly deposited Fe(Ni)S precipitates appear to facilitate electron transfer in an electrochemical-cell mechanism with two distinct half-reactions. Decreasing the pH gradient significantly, removing H2, or eliminating the precipitate yielded no detectable product. Our work demonstrates the feasibility of spatially separated yet electrically coupled geochemical reactions as drivers of otherwise endergonic processes. Beyond corroborating the ability of early-Earth alkaline hydrothermal systems to couple carbon reduction to hydrogen oxidation through biologically relevant mechanisms, these results may also be of significance for industrial and environmental applications, where other redox reactions could be facilitated using similarly mild approaches.


Assuntos
Dióxido de Carbono/química , Ciclo do Carbono , Transporte de Elétrons , Hidrogênio/química , Concentração de Íons de Hidrogênio , Fontes Hidrotermais/química , Oxirredução , Força Próton-Motriz
9.
Astrobiology ; 20(12): 1405-1412, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32924535

RESUMO

Hydrothermal vents, which are highly plausible habitable environments for life and of interest for some origin-of-life scenarios, may exist on icy moons such as Europa or Enceladus in addition to Earth. Some hydrothermal vent chimney structures are extremely porous and friable, making their reconstruction in the lab challenging (e.g., brucite or saponite in alkaline hydrothermal settings). Here, we present the results from our efforts to reconstruct a simplified chimney structure directly out of mineral powder using binder jet additive manufacturing. Olivine sand was chosen for this initial method development effort since it represents a naturally occurring seafloor material and is inexpensively available in large quantities in powder form. The crystal structure of olivine used for the print was not modified during the process, as confirmed by powder X-ray diffraction (XRD). To characterize the microstructure of our 3D printed precipitates, we used computed tomography (CT) X-ray scan techniques. We also evaluated a chimney precipitate from a sample collected from the Prony Hydrothermal Field (PHF), southern New Caledonia, an alkaline system driven by serpentinization with mineralogy composed of brucite and carbonates. While not directly comparable from a mineralogical point of view, the microstructure and porosity of both precipitates was similar, suggesting that our 3D printing technique may be a valuable tool for future astrobiology research on hydrothermal vent precipitates.


Assuntos
Fontes Hidrotermais , Minerais/análise , Planeta Terra , Exobiologia , Fontes Hidrotermais/química , Impressão Tridimensional
10.
Proc Natl Acad Sci U S A ; 117(34): 20453-20461, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32817473

RESUMO

Subseafloor mixing of high-temperature hot-spring fluids with cold seawater creates intermediate-temperature diffuse fluids that are replete with potential chemical energy. This energy can be harnessed by a chemosynthetic biosphere that permeates hydrothermal regions on Earth. Shifts in the abundance of redox-reactive species in diffuse fluids are often interpreted to reflect the direct influence of subseafloor microbial activity on fluid geochemical budgets. Here, we examine hydrothermal fluids venting at 44 to 149 °C at the Piccard hydrothermal field that span the canonical 122 °C limit to life, and thus provide a rare opportunity to study the transition between habitable and uninhabitable environments. In contrast with previous studies, we show that hydrocarbons are contributed by biomass pyrolysis, while abiotic sulfate (SO42-) reduction produces large depletions in H2 The latter process consumes energy that could otherwise support key metabolic strategies employed by the subseafloor biosphere. Available Gibbs free energy is reduced by 71 to 86% across the habitable temperature range for both hydrogenotrophic SO42- reduction to hydrogen sulfide (H2S) and carbon dioxide (CO2) reduction to methane (CH4). The abiotic H2 sink we identify has implications for the productivity of subseafloor microbial ecosystems and is an important process to consider within models of H2 production and consumption in young oceanic crust.


Assuntos
Fontes Hidrotermais/química , Temperatura Alta , Hidrogênio/química , Fontes Hidrotermais/microbiologia , Oxirredução , Água do Mar/química
11.
FEBS Lett ; 594(17): 2717-2733, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32416624

RESUMO

Life as we know it would not exist without water. However, water molecules not only serve as a solvent and reactant but can also promote hydrolysis, which counteracts the formation of essential organic molecules. This conundrum constitutes one of the central issues in origin of life. Hydrolysis is an important part of energy metabolism for all living organisms but only because, inside cells, it is a controlled reaction. How could hydrolysis have been regulated under prebiotic settings? Lower water activities possibly provide an answer: geochemical sites with less free and more bound water can supply the necessary conditions for protometabolic reactions. Such conditions occur in serpentinising systems, hydrothermal sites that synthesise hydrogen gas via rock-water interactions. Here, we summarise the parallels between biotic and abiotic means of controlling hydrolysis in order to narrow the gap between biochemical and geochemical reactions and briefly outline how hydrolysis could even have played a constructive role at the origin of molecular self-organisation.


Assuntos
Hidrogênio/química , Modelos Químicos , Origem da Vida , Água do Mar/química , Água/química , Catálise , Óxido Ferroso-Férrico/química , Sedimentos Geológicos/química , Hidrólise , Fontes Hidrotermais/química , Hidróxido de Magnésio/química , Compostos de Silício/química
12.
Environ Microbiol ; 22(6): 1971-1976, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32157786

RESUMO

Chemotrophic microorganisms gain energy for cellular functions by catalyzing oxidation-reduction (redox) reactions that are out of equilibrium. Calculations of the Gibbs energy ( ΔG r ) can identify whether a reaction is thermodynamically favourable and quantify the accompanying energy yield at the temperature, pressure and chemical composition in the system of interest. Based on carefully calculated values of ΔG r , we predict a novel microbial metabolism - sulfur comproportionation (3H2 S + SO 4 2 - + 2H+ ⇌ 4S0 + 4H2 O). We show that at elevated concentrations of sulfide and sulfate in acidic environments over a broad temperature range, this putative metabolism can be exergonic ( ΔG r <0), yielding ~30-50 kJ mol-1 . We suggest that this may be sufficient energy to support a chemolithotrophic metabolism currently missing from the literature. Other versions of this metabolism, comproportionation to thiosulfate (H2 S + SO 4 2 - ⇌ S 2 O 3 2 - + H2 O) and to sulfite (H2 S + 3 SO 4 2 - ⇌ 4 SO 3 2 - + 2H+ ), are only moderately exergonic or endergonic even at ideal geochemical conditions. Natural and impacted environments, including sulfidic karst systems, shallow-sea hydrothermal vents, sites of acid mine drainage, and acid-sulfate crater lakes, may be ideal hunting grounds for finding microbial sulfur comproportionators.


Assuntos
Bactérias/metabolismo , Crescimento Quimioautotrófico/fisiologia , Metabolismo Energético/fisiologia , Enxofre/metabolismo , Fontes Hidrotermais/química , Oxirredução , Sulfatos , Temperatura , Termodinâmica
13.
Astrobiology ; 20(3): 307-326, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32125196

RESUMO

The molecules feeding life's emergence are thought to have been provided through the hydrothermal interactions of convecting carbonic ocean waters with minerals comprising the early Hadean oceanic crust. Few laboratory experiments have simulated ancient hydrothermal conditions to test this conjecture. We used the JPL hydrothermal flow reactor to investigate CO2 reduction in simulated ancient alkaline convective systems over 3 days (T = 120°C, P = 100 bar, pH = 11). H2-rich hydrothermal simulant and CO2-rich ocean simulant solutions were periodically driven in 4-h cycles through synthetic mafic and ultramafic substrates and Fe>Ni sulfides. The resulting reductants included micromoles of HS- and formate accompanied possibly by micromoles of acetate and intermittent minor bursts of methane as ascertained by isotopic labeling. The formate concentrations directly correlated with the CO2 input as well as with millimoles of Mg2+ ions, whereas the acetate did not. Also, tens of micromoles of methane were drawn continuously from the reactor materials during what appeared to be the onset of serpentinization. These results support the hypothesis that formate may have been delivered directly to a branch of an emerging acetyl coenzyme-A pathway, thus obviating the need for the very first hydrogenation of CO2 to be made in a hydrothermal mound. Another feed to early metabolism could have been methane, likely mostly leached from primary CH4 present in the original Hadean crust or emanating from the mantle. That a small volume of methane was produced sporadically from the 13CO2-feed, perhaps from transient occlusions, echoes the mixed results and interpretations from other laboratories. As serpentinization and hydrothermal leaching can occur wherever an ocean convects within anhydrous olivine- and sulfide-rich crust, these results may be generalized to other wet rocky planets and moons in our solar system and beyond.


Assuntos
Fontes Hidrotermais/química , Compostos de Ferro/metabolismo , Compostos de Magnésio/metabolismo , Origem da Vida , Água do Mar/química , Silicatos/metabolismo , Acetilcoenzima A/metabolismo , Dióxido de Carbono/química , Planeta Terra , Hidrogênio/química , Compostos de Ferro/química , Compostos de Magnésio/química , Metano/química , Oceanos e Mares , Silicatos/química
14.
Nucleic Acids Res ; 48(6): 3343-3355, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32016421

RESUMO

NrS-1 is the first known phage that can infect Epsilonproteobacteria, one of the predominant primary producers in the deep-sea hydrothermal vent ecosystems. NrS-1 polymerase is a multidomain enzyme and is one key component of the phage replisome. The N-terminal Prim/Pol and HBD domains are responsible for DNA polymerization and de novo primer synthesis activities of NrS-1 polymerase. However, the structure and function of the C-terminus (CTR) of NrS-1 polymerase are poorly understood. Here, we report two crystal structures, showing that NrS-1 CTR adopts one unique hexameric ring-shaped conformation. Although the central helicase domain of NrS-1 CTR shares structural similarity with the superfamily III helicases, the folds of the Head and Tail domains are completely novel. Via mutagenesis and in vitro biochemical analysis, we identified many residues important for the helicase and polymerization activities of NrS-1 polymerase. In addition to NrS-1 polymerase, our study may also help us identify and understand the functions of multidomain polymerases expressed by many NrS-1 related phages.


Assuntos
Bacteriófagos/enzimologia , Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/ultraestrutura , Conformação Proteica , Sequência de Aminoácidos/genética , Bacteriófagos/genética , Bacteriófagos/ultraestrutura , Cristalografia por Raios X , DNA Polimerase Dirigida por DNA/química , Ecossistema , Epsilonproteobacteria/genética , Epsilonproteobacteria/virologia , Fontes Hidrotermais/química
15.
Astrobiology ; 20(3): 349-363, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31985268

RESUMO

In the present work, near-infrared, laser-induced breakdown spectroscopy, Raman, and X-ray diffractometer techniques have been complementarily used to carry out a comprehensive characterization of a terrestrial analogue selected from the Chesapeake Bay impact structure (CBIS). The obtained data clearly highlight the key role of Raman spectroscopy in the detection of minor and trace compounds, through which inferences about geological processes occurred in the CBIS can be extrapolated. Beside the use of commercial systems, further Raman analyses were performed by the Raman laser spectrometer (RLS) ExoMars Simulator. This instrument represents the most reliable tool to effectively predict the scientific capabilities of the ExoMars/Raman system that will be deployed on Mars in 2021. By emulating the analytical procedures and operational restrictions established by the ExoMars mission rover design, it was proved that the RLS ExoMars Simulator can detect the amorphization of quartz, which constitutes an analytical clue of the impact origin of craters. Beside amorphized minerals, the detection of barite and siderite, compounds crystallizing under hydrothermal conditions, helps indirectly to confirm the presence of water in impact targets. Furthermore, the RLS ExoMars Simulator capability of performing smart molecular mappings was successfully evaluated.


Assuntos
Exobiologia/instrumentação , Marte , Análise Espectral Raman/instrumentação , Difração de Raios X/instrumentação , Sulfato de Bário/análise , Carbonatos/análise , Compostos Férricos/análise , Fontes Hidrotermais/análise , Fontes Hidrotermais/química , Minerais/análise , Quartzo/análise , Simulação de Ambiente Espacial
16.
Philos Trans A Math Phys Eng Sci ; 378(2165): 20180429, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31902336

RESUMO

The Lost City hydrothermal field is a dramatic example of the biological potential of serpentinization. Microbial life is prevalent throughout the Lost City chimneys, powered by the hydrogen gas and organic molecules produced by serpentinization and its associated geochemical reactions. Microbial life in the serpentinite subsurface below the Lost City chimneys, however, is unlikely to be as dense or active. The marine serpentinite subsurface poses serious challenges for microbial activity, including low porosities, the combination of stressors of elevated temperature, high pH and a lack of bioavailable ∑CO2. A better understanding of the biological opportunities and challenges in serpentinizing systems would provide important insights into the total habitable volume of Earth's crust and for the potential of the origin and persistence of life in Earth's subsurface environments. Furthermore, the limitations to life in serpentinizing subsurface environments on Earth have significant implications for the habitability of subsurface environments on ocean worlds such as Europa and Enceladus. Here, we review the requirements and limitations of life in serpentinizing systems, informed by our research at the Lost City and the underwater mountain on which it resides, the Atlantis Massif. This article is part of a discussion meeting issue 'Serpentinite in the Earth System'.


Assuntos
Fontes Hidrotermais/química , Minerais/química , Oceanos e Mares , Temperatura , Oligoelementos/química
17.
Mar Drugs ; 17(12)2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766541

RESUMO

The deep sea, which is defined as sea water below a depth of 1000 m, is one of the largest biomes on the Earth, and is recognised as an extreme environment due to its range of challenging physical parameters, such as pressure, salinity, temperature, chemicals and metals (such as hydrogen sulphide, copper and arsenic). For surviving in such extreme conditions, deep-sea extremophilic microorganisms employ a variety of adaptive strategies, such as the production of extremozymes, which exhibit outstanding thermal or cold adaptability, salt tolerance and/or pressure tolerance. Owing to their great stability, deep-sea extremozymes have numerous potential applications in a wide range of industries, such as the agricultural, food, chemical, pharmaceutical and biotechnological sectors. This enormous economic potential combined with recent advances in sampling and molecular and omics technologies has led to the emergence of research regarding deep-sea extremozymes and their primary applications in recent decades. In the present review, we introduced recent advances in research regarding deep-sea extremophiles and the enzymes they produce and discussed their potential industrial applications, with special emphasis on thermophilic, psychrophilic, halophilic and piezophilic enzymes.


Assuntos
Archaea/enzimologia , Bactérias/enzimologia , Produtos Biológicos/farmacologia , Biotecnologia/métodos , Extremófilos/enzimologia , Adaptação Fisiológica , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Fontes Hidrotermais/química , Fontes Hidrotermais/microbiologia , Água do Mar/química , Água do Mar/microbiologia
18.
Appl Environ Microbiol ; 86(1)2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31628148

RESUMO

Use of hydrogen gas (H2) as an electron donor is common among free-living chemolithotrophic microorganisms. Given the presence of this dissolved gas at deep-sea hydrothermal vents, it has been suggested that it may also be a major electron donor for the free-living and symbiotic chemolithoautotrophic bacteria that are the primary producers at these sites. Giant Riftia pachyptila siboglinid tubeworms and their symbiotic bacteria ("Candidatus Endoriftia persephone") dominate many vents in the Eastern Pacific, and their use of sulfide as a major electron donor has been documented. Genes encoding hydrogenase are present in the "Ca Endoriftia persephone" genome, and proteome data suggest that these genes are expressed. In this study, high-pressure respirometry of intact R. pachyptila and incubations of trophosome homogenate were used to determine whether this symbiotic association could also use H2 as a major electron donor. Measured rates of H2 uptake by intact R. pachyptila in high-pressure respirometers were similar to rates measured in the absence of tubeworms. Oxygen uptake rates in the presence of H2 were always markedly lower than those measured in the presence of sulfide, as was the incorporation of 13C-labeled dissolved inorganic carbon. Carbon fixation by trophosome homogenate was not stimulated by H2, nor was hydrogenase activity detectable in these samples. Though genes encoding [NiFe] group 1e and [NiFe] group 3b hydrogenases are present in the genome and transcribed, it does not appear that H2 is a major electron donor for this system, and it may instead play a role in intracellular redox homeostasis.IMPORTANCE Despite the presence of hydrogenase genes, transcripts, and proteins in the "Ca Endoriftia persephone" genome, transcriptome, and proteome, it does not appear that R. pachyptila can use H2 as a major electron donor. For many uncultivable microorganisms, omic analyses are the basis for inferences about their activities in situ However, as is apparent from the study reported here, there are dangers in extrapolating from omics data to function, and it is essential, whenever possible, to verify functions predicted from omics data with physiological and biochemical measurements.


Assuntos
Crescimento Quimioautotrófico/fisiologia , Gammaproteobacteria/metabolismo , Hidrogênio/metabolismo , Fontes Hidrotermais , Poliquetos/microbiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Genes Bacterianos , Genoma Bacteriano , Interações entre Hospedeiro e Microrganismos/fisiologia , Hidrogenase/genética , Hidrogenase/metabolismo , Fontes Hidrotermais/química , Fontes Hidrotermais/microbiologia , Poliquetos/metabolismo , Substâncias Redutoras/metabolismo , Simbiose
19.
Nat Commun ; 10(1): 3580, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31395889

RESUMO

Ocean acidification is expected to negatively impact calcifying organisms, yet we lack understanding of their acclimation potential in the natural environment. Here we measured geochemical proxies (δ11B and B/Ca) in Porites astreoides corals that have been growing for their entire life under low aragonite saturation (Ωsw: 0.77-1.85). This allowed us to assess the ability of these corals to manipulate the chemical conditions at the site of calcification (Ωcf), and hence their potential to acclimate to changing Ωsw. We show that lifelong exposure to low Ωsw did not enable the corals to acclimate and reach similar Ωcf as corals grown under ambient conditions. The lower Ωcf at the site of calcification can explain a large proportion of the decreasing P. astreoides calcification rates at low Ωsw. The naturally elevated seawater dissolved inorganic carbon concentration at this study site shed light on how different carbonate chemistry parameters affect calcification conditions in corals.


Assuntos
Aclimatação , Antozoários/fisiologia , Calcificação Fisiológica , Carbonato de Cálcio/metabolismo , Fontes Hidrotermais/química , Animais , Antozoários/química , Carbonato de Cálcio/análise , Carbonato de Cálcio/química , Geografia , Concentração de Íons de Hidrogênio , Isótopos , México , Água do Mar/química
20.
Microbes Environ ; 34(3): 293-303, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31378759

RESUMO

Candidatus Hydrothermarchaeota, formally called Marine Benthic Group E, has often been detected in iron- and sulfur-rich marine environments, such as hydrothermal vents and cold seeps. However, their ecology and physiology remain unclear. Cultivated representatives of this group are still lacking and only several metagenome-assembled genomes (MAGs) and single-amplified genomes (SAGs) are available from two deep-sea hydrothermal areas, the Juan de Fuca Ridge (JdFR) and Guaymas Basin (GB), in the north-east Pacific. We herein report four MAGs of Ca. Hydrothermarchaeota recovered from hydrothermally-inactive metal sulfide deposits at the Southern Mariana Trough (SMT) in the north-west Pacific. A phylogenetic analysis indicated that the MAGs of the SMT were distinct from those of the JdFR and GB at the genus or potentially family level. Ca. Hydrothermarchaeota MAGs from the SMT commonly possessed putative genes for carboxydotrophic and hydrogenotrophic respiration using oxidized chemical species of sulfur as electron acceptors and also for carbon fixation, as reported previously in MAGs/SAGs from the JdFR and GB. This result strongly supports Ca. Hydrothermarchaeota containing anaerobic chemolithoautotrophs using carbon monoxide and/or hydrogen as electron donors. A comparative genome analysis highlighted differences in the capability of nitrogen fixation between MAGs from the SMT and the other fields, which are consistent with environmental differences in the availability of nitrogen sources for assimilation between the fields. Based on the wide distribution in various areas, abundance, and metabolic potential of Ca. Hydrothermarchaeota, they may play a role in the biogeochemical cycling of carbon, nitrogen, sulfur, and iron in marine environments, particularly in deep-sea hydrothermal fields.


Assuntos
Archaea/classificação , Archaea/metabolismo , Sedimentos Geológicos/microbiologia , Filogenia , Água do Mar/microbiologia , Archaea/genética , Archaea/isolamento & purificação , Proteínas Arqueais/genética , Monóxido de Carbono/metabolismo , DNA Arqueal/genética , Sedimentos Geológicos/química , Hidrogênio/metabolismo , Fontes Hidrotermais/química , Fontes Hidrotermais/microbiologia , Metagenoma , Metais/análise , Metais/metabolismo , Nitratos/metabolismo , Oxirredução , Oceano Pacífico , RNA Ribossômico 16S/genética , Água do Mar/química , Sulfetos/análise , Sulfetos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...